The emergence of magnetic flux through a partially ionised solar atmosphere

نویسندگان

  • J. E. Leake
  • T. D. Arber
چکیده

We present results from 2.5D numerical simulations of the emergence of magnetic flux from the upper convection zone through the photosphere and chromosphere into the corona. Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised, in particular the lower chromosphere. This leads to Cowling resistivities orders of magnitude larger than the Coulomb values, and thus to anisotropic dissipation in Ohm’s law. This also leads to localised low magnetic Reynolds numbers (Rm < 1). We find that the rates of emergence of magnetic field are greatly increased by the partially ionised regions of the model atmosphere, and the resultant magnetic field is more diffuse. More importantly, the only currents associated with the magnetic field to emerge into the corona are aligned with the field, and thus the newly formed coronal field is force-free.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injection of Magnetic Energy and Magnetic Helicity into the Solar Atmosphere by an Emerging Magnetic Flux Tube

We present a detailed investigation of the dynamical behavior of emerging magnetic flux using 3dimensional MHD numerical simulation. A magnetic flux tube with a lefthanded twist, initially placed below the photosphere, emerges into the solar atmosphere. This leads to a dynamical expansion of emerging field lines as well as an injection of magnetic energy and magnetic helicity into the atmospher...

متن کامل

Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so th...

متن کامل

Is null - point reconnection important for solar flux emergence ?

The role of null-point reconnection in a 3D numerical MHD model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence,...

متن کامل

Magnetic flux emergence and associated dynamic phenomena in the Sun.

We present a review of the process of magnetic flux emergence in the Sun. We focus on observations and numerical experiments that explore the dynamical rise of magnetic fields from the solar interior to the corona. We describe the response of the highly stratified solar atmosphere on flux emergence and, consequently, we present a comprehensive picture of the coupling between solar dynamic event...

متن کامل

The Emergence of a Twisted Flux Tube into the Solar Atmosphere: Sunspot Rotations and the Formation of a Coronal Flux Rope

We present a 3D simulation of the dynamic emergence of a twisted magnetic flux tube from the top layer of the solar convection zone into the solar atmosphere and corona. It is found that after a brief initial stage of flux emergence during which the two polarities of the bipolar region become separated and the tubes intersecting the photosphere become vertical, significant rotational motion set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006